Invertibility and Largest Eigenvalue of Symmetric Matrix Signings
نویسندگان
چکیده
The spectra of signed matrices have played a fundamental role in social sciences, graph theory, and control theory. In this work, we investigate the computational problems of identifying symmetric signings of matrices with natural spectral properties. Our results are twofold: 1. We show NP-completeness for the following three problems: verifying whether a given matrix has a symmetric signing that is positive semi-definite/singular/has bounded eigenvalues. However, we also illustrate that the complexity could substantially differ for input matrices that are adjacency matrices of graphs. 2. We exhibit a stark contrast between invertibility and the above-mentioned spectral properties: we show a combinatorial characterization of matrices with invertible symmetric signings and design an efficient algorithm using this characterization to verify whether a given matrix has an invertible symmetric signing. Next, we give an efficient algorithm to solve the search problem of finding an invertible symmetric signing for matrices whose support graph is bipartite. We also provide a lower bound on the number of invertible symmetric signed adjacency matrices. Finally, we give an efficient algorithm to find a minimum increase in support of a given symmetric matrix so that it has an invertible symmetric signing. We use combinatorial and spectral techniques in addition to classic results from matching theory. Our combinatorial characterization of matrices with invertible symmetric signings might be of independent interest. ∗Email: {ccarlsn2,karthe,hchang17,akolla}@illinois.edu
منابع مشابه
Some Results on Symmetric
In this work, we investigate several natural computational problems related to identifying symmetric signings of symmetric matrices with specific spectral properties. We show NP-completeness for verifying whether an arbitrary matrix has a symmetric signing that is positive semi-definite, is singular, or has bounded eigenvalues. We exhibit a stark contrast between invertibility and the above-men...
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملOn lower bounds for the largest eigenvalue of a symmetric matrix
We consider lower bounds for the largest eigenvalue of a symmetric matrix. In particular we extend a recent approach by Piet Van Mieghem. © 2008 Elsevier Inc. All rights reserved. AMS classification: Primary 15A42; Secondary 30B10
متن کاملProperties of Central Symmetric X-Form Matrices
In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.
متن کاملOptimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices
This paper gives max characterizations for the sum of the largest eigen-values of a symmetric matrix. The elements which achieve the maximum provide a concise characterization of the generalized gradient of the eigenvalue sum in terms of a dual matrix. The dual matrix provides the information required to either verify rst-order optimality conditions at a point or to generate a descent direction...
متن کامل